Improving the Convergence of Iterative Importance Sampling for Computing Upper and Lower Expectations

Thomas Fetz
Unit for Engineering Mathematics
University of Innsbruck, Austria
Thomas.Fetz@uibk.ac.at

11th International Symposium on Imprecise Probabilities: Theories and Applications
July 3–6, 2019, Ghent, Belgium
Problem statement

Given:
- Function \(h : A \subseteq \mathbb{R}^d \rightarrow \mathbb{R} : x \rightarrow h(x) \) which is \textbf{expensive} to evaluate.
- Family \(\{f_t\}_{t \in \mathcal{T}} \) of density functions \(f_t \).

Aim:
- Computation of \textbf{lower} / \textbf{upper} expectations = solving optimisation problems

\[
\theta^* = \min_{t \in \mathcal{T}} \theta(t), \quad \theta^* = \max_{t \in \mathcal{T}} \theta(t), \quad \text{objective function} \quad \theta(t) = \int_A h(x) f_t(x) \, dx.
\]
- In engineering: \textbf{Lower} / \textbf{upper probabilities of failure} for

\[
h(x) = \mathbb{1}_{g(x) < 0}(x) \quad (g \text{ limit state function, } g(x) < 0 \text{ means failure}).
\]

Method:
- \textbf{Efficient approximation / estimate} \(\hat{\theta} \) of the objective function \(\theta \)
 using \textbf{importance sampling / reweighting} techniques.
- \textbf{Fixed point iterations} to improve estimates \(\hat{\theta}^* \) of the lower expectation \(\hat{\theta}^* \).
- \textbf{Weighted combinations of previous results of fixed point iteration} to improve convergence.
Simple numerical example

- **Function h:**
 \[h(x) = 1_D(x), \quad D = (-\infty, -2) \cup [2, \infty). \]

- **Family of density functions:**
 \[f_t \sim \mathcal{N}(\mu(t), \sigma^2(t)), \quad t \in \mathcal{T} = [-7, 7] \]
 mean \(\mu(t) = t \), variance \(\sigma^2(t) = 4 \).

- **Exact result:** \(\theta_* = 0.3173 \) at \(t_* = 0 \).

Monte Carlo simulation

1. **Set of random numbers**
 \[\Omega_t = \{ U_1, U_2, \ldots, U_n \}, \quad U_i = (V_i, W_i) \]
 \(V_i, W_i \sim \text{Uniform}(0, 1) \)

2. **Sample points**
 \[x_t(U_i) = \mu(t) + \sigma(t) \cdot \sqrt{-2 \ln V_i \cdot \cos(2\pi W_i)} \sim \mathcal{N}(\mu(t), \sigma^2(t)) \]

3. **Monte Carlo simulation w.r.t. \(\Omega_t \):**
 \[\hat{\theta}_\Omega_t(t) = \frac{1}{n} \sum_{i=1}^{n} 1_D(x_t(U_i)) \]
 estimate of \(\theta(t) \).

Diagram:
- Graph of \(f_t \) and \(D \) with labeled axes.
- Graph of \(\theta \) with marked value at \(t_* = 0 \).
Example & Monte Carlo simulation

Simple numerical example

- **Function** h:

 $$h(x) = \mathbb{1}_D(x), \quad D = (-\infty, -2] \cup [2, \infty).$$

- **Family of density functions**:

 $$f_t \sim \mathcal{N}(\mu(t), \sigma^2(t)), \quad t \in \mathcal{T} = [-7, 7]$$

 mean $\mu(t) = t$, variance $\sigma^2(t) = 4$.

- **Exact result**: $\theta^* = 0.3173$ at $t^* = 0$.

Monte Carlo simulation, three steps

1. **Set of random numbers** $\Omega_t = \{U_1, U_2, \ldots, U_n\}$, $U_i = (V_i, W_i)$, $V_i, W_i \sim \mathcal{U}([0, 1])$ i.i.d.

2. **Sample points** $x_t(U_i) = x_t(V_i, W_i) = \mu(t) + \sigma(t) \cdot \sqrt{-2\ln V_i} \cdot \cos(2\pi W_i) \sim \mathcal{N}(\mu(t), \sigma^2(t))$.

 (transformation of Ω_t, Box-Muller)

3. **Monte Carlo simulation w.r.t.** Ω_t:

 $$\hat{\theta}_{\Omega_t}(t) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_D(x_t(V_i, W_i)), \quad \text{estimate of } \theta(t).$$

 (expensive evaluation of h)
Approach 1: Different sets of random numbers for each parameter value t

- **Different** sets of n random numbers $U_i = (V_i, W_i)$ for each parameter value t.

- **Different** sets of n sample points $x_i(V_i, W_i)$ for each parameter value t.

- **Noisy** estimate (approximation) $\hat{\theta}_{\Omega(\cdot)}$ of θ using MC.

- **Difficult** to solve the optimisation problem.
- **Expensive** because of the evaluation of expensive h for different sets of sample points in the optimisation algorithm.
Approach 2: One single set of random numbers for all parameter values t

One single set of n random numbers $U_i = (V_i, W_i)$ for all parameter values t.

Different sets of n sample points $x_t(V_i, W_i)$ for each parameter value t.

Estimate $\hat{\theta}_\Omega$ of θ is a step function.

- Difficult to solve the optimisation problem.
- Expensive because of the evaluation of expensive h for different sets of sample points in the optimisation algorithm.
Approach 3: One single set of random numbers & One single set of sample points

\[\int_A 1_D(x) f_t(x) \, dx = \int_A 1_D(x) \frac{f_t(x)}{f_s^R(x)} f_s^R(x) \, dx. \]

One single set of random numbers \(U_i = (V_i, W_i) \) for all \(t \).

One single set of sample points \(x_t(V_i, W_i) \) for all \(t \).

Reweighting the sample points!

Estimate \(\hat{\theta}_{\Omega,s=3} \) is cheap to evaluate and continuous. Easy to solve the optimisation problem.

Importance sampling / reweighting

- **Importance sampling density** \(f_s^R \) for density \(f_s, s \in \mathcal{T} \).
 (here in the example: \(f_s^R := f_s \) and \(s = 3 \))

- **Weights** \(w_{st}(x) = f_t(x)/f_s^R(x) \).
 (classical: \(w_s(x) = f_s(x)/f_s^R(x) \))

- **MC**: \(\hat{\theta}_{\Omega,s}(t) = \frac{1}{n} \sum_{i=1}^{n} 1_D(x_s(V_i, W_i)) \cdot w_{st}(x_s(V_i, W_i)). \)
 (classical importance sampling if \(s = t \))

- **Normalisation**: Divide by \(\sum_{i=1}^{n} w_{st}(x_s(V_i, W_i)) \).

Bad approximation \(\hat{\theta}_{\Omega,s}(t) \) of \(\hat{\theta}_{\Omega}(t) \) and \(\theta(t) \) for \(t \) far from \(s \)!
Function $\hat{\theta}_\Omega(s,t) := \hat{\theta}_{\Omega,s}(t)$ for all $s \in \mathcal{T}$.

Fixed point problem!
Improvement of $\hat{\theta}_{\Omega}^*$ by fixed point iteration

$$s^{(k+1)} = \tau_{\Omega}(s^{(k)}) = \arg\min_{t \in \mathcal{T}} \hat{\theta}_{\Omega,s^{(k)}}(t)$$

Improving convergence of fixed point iteration

1. Increased reweighting sample coverage, e.g. increased variance.
2. Design point method (for engineering problems).
3. Weighted combination of previous results of iteration, complementary to (1+2).
Weighted combination of previous results of fixed point iteration

Observations
- Estimates $\hat{\theta}_{\Omega,s^{(i)}}(t)$ are **bad for t far from $s^{(i)}$** → wrong minimum at $\tau_{\star\Omega}(s^{(i)})$ far from $s^{(i)}$ → leading away from fixed point → circling.
- Exact function ϑ is **constant** in s-direction.

Idea
- **Weighted combination** of previous results $\hat{\theta}_{\Omega,s^{(i)}}$.
- **High** weights for t **close to** $s^{(i)}$ (good estimates).
- **Low** weights for t **far from** $s^{(i)}$ (bad estimates).

New iteration scheme using weighted combination

$$s^{(k+1)} = \tau_{\star\Omega}^{(k)}(s^{(k)}, \ldots, s^{(1)}) = \arg\min_{t \in \mathcal{T}} \sum_{i=1}^{k} \phi^{(k)}_{s^{(i)}}(t) \cdot \hat{\theta}_{\Omega,s^{(i)}}(t), \quad \phi^{(k)}_{s^{(i)}}(t) \geq 0 \quad \text{and} \quad \sum_{i=1}^{k} \phi^{(k)}_{s^{(i)}}(t) = 1.$$
Weighted combination of previous results of fixed point iteration

Combination of $\hat{\theta}_{\Omega,s^{(1)}}$ and $\hat{\theta}_{\Omega,s^{(2)}}$ resulting in $\hat{\theta}_{\Omega,s^{(2)}}^{(2)}$, $\hat{\theta}_\Omega$.

Updated $\hat{\varphi}_\Omega^{(k+1)}(s,t) = \varphi_s^{(k+1)}(t) \cdot \hat{\theta}_{\Omega,s}(t) + \sum_{i=1}^k \varphi_s^{(k+1)}(t) \cdot \hat{\theta}_{\Omega,s(i)}(t)$ and iteration path.
Please visit my poster for more details and numerical examples!

Thank you for your attention!

